간행물

한국정보처리학회> 정보처리학회논문지. 소프트웨어 및 데이터 공학

정보처리학회논문지. 소프트웨어 및 데이터 공학 update

KIPS Transactions on Software and Data Engineering

  • : 한국정보처리학회
  • : 공학분야  >  전자공학
  • : KCI등재
  • :
  • : 연속간행물
  • : 월간
  • : 2287-5905
  • :
  • :

수록정보
수록범위 : 1권1호(2012)~8권3호(2019) |수록논문 수 : 501
정보처리학회논문지. 소프트웨어 및 데이터 공학
8권3호(2019년 03월) 수록논문
최근 권호 논문
| | | |

KCI등재

1마이크로서비스 아키텍처 기반의 통합 콘텐츠 관리 시스템 설계 및 구현

저자 : 윤경식 ( Kyung Sik Yoon ) , 김영한 ( Young Han Kim )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 8권 3호 발행 연도 : 2019 페이지 : pp. 97-108 (12 pages)

다운로드

(기관인증 필요)

초록보기

디지털 콘텐츠 재화가 증가됨에 따라 이를 관리하기 위한 콘텐츠 관리 시스템에 새로운 콘텐츠 서비스를 추가하거나 기존 콘텐츠 관리 시스템 간에 통합하는 경우가 빈번하게 발생한다. 효율적인 시스템 통합을 위해 본 논문에서는 이 기종으로 구성된 두개의 콘텐츠 관리 시스템을 마이크로서비스 아키텍처 기반으로 통합 콘텐츠 관리 시스템을 설계하여 개발 간 기존 시스템의 중단 없이 재활용이 가능하고, 효율적으로 통합이 가능하며, 확장성을 가진 시스템을 구현하였다. 이를 통해 구현된 시스템의 소요되는 자원 사용량을 측정하고, 기존 미들웨어를 사용한 시스템 통합을 방식 간의 차이점을 분석하였다.


As digital content items increase, new content services are often added to or integrated among existing content management systems to manage them. For efficient system integration, this paper designed a content management system that combines two existing content management systems based on a microservices architecture. In addition, during the development process, integrated system that existing systems were recycled without disruption to existing systems, integrated efficiently and implemented as scalable systems. It measured the resource usage of this systems and analyzed the differences between features for system integration using traditional middleware.

KCI등재

2문장 및 어절 유사도를 이용한 표절 탐지 시스템 구현

저자 : 맹주수 ( Joosoo Maeng ) , 박지수 ( Ji Su Park ) , 손진곤 ( Jin Gon Shon )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 8권 3호 발행 연도 : 2019 페이지 : pp. 109-114 (6 pages)

다운로드

(기관인증 필요)

초록보기

기존 표절 탐지 시스템은 형태소 분석을 기반으로 공통 단어의 빈도수를 이용해 문서의 유사도를 측정한다. 그러나 주제가 같아 유사 단어가 많이 쓰인 경우, 문장 단위로 일부만 발췌 표절한 경우, 그리고 조사와 어미의 유사성이 있는 경우는 공통 단어의 빈도수만으로는 정확한 유사도를 측정하는데 한계가 있다. 따라서 본 논문에서는 공통 단어 빈도수 기반의 유사도 측정 외에 문장 유사도와 어절 유사도를 추가적으로 측정해 유사도의 정확성을 높일 수 있는 표절 탐지 시스템을 설계하고 구현하였다. 실험 결과, 문장 유사도를 측정함으로써 문장 단위로 표절이 이루어진 경우를 발견할 수 있었고, 어절 유사도를 추가로 측정함으로써 부분표절이 일어난 경우라도 조사나 어미까지 그대로 사용한 표절의 경우 등을 발견할 수 있었다.


The similarity detecting method that is basically used in most plagiarism detecting systems is to use the frequency of shared words based on morphological analysis. However, this method has limitations on detecting accurate degree of similarity, especially when similar words concerning the same topics are used, sentences are partially separately excerpted, or postpositions and endings of words are similar. In order to overcome this problem, we have designed and implemented a plagiarism detecting system that provides more reliable similarity information by measuring sentence similarity and syntactic word similarity in addition to the conventional word similarity. We have carried out a comparison of on our system with a conventional system using only word similarity. The comparative experiment has shown that our system can detect plagiarized document that the conventional system can detect or cannot.

KCI등재

3CTC를 적용한 CRNN 기반 한국어 음소인식 모델 연구

저자 : 홍윤석 ( Hong Yoonseok ) , 기경서 ( Ki Kyungseo ) , 권가진 ( Gweon Gahgene )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 8권 3호 발행 연도 : 2019 페이지 : pp. 115-122 (8 pages)

다운로드

(기관인증 필요)

초록보기

지금까지의 한국어 음소 인식에는 은닉 마르코프-가우시안 믹스쳐 모델(HMM-GMM)이나 인공신경망-HMM을 결합한 하이브리드 시스템이 주로 사용되어 왔다. 하지만 이 방법은 성능 개선 여지가 적으며, 전문가에 의해 제작된 강제정렬(force-alignment) 코퍼스 없이는 학습이 불가능하다는 단점이 있다. 이 모델의 문제로 인해 타 언어를 대상으로 한 음소 인식 연구에서는 이 단점을 보완하기 위해 순환 신경망(RNN)계열 구조와 Connectionist Temporal Classification(CTC) 알고리즘을 결합한 신경망 기반 음소 인식 모델이 연구된 바 있다. 그러나 RNN 계열 모델을 학습시키기 위해 많은 음성 말뭉치가 필요하고 구조가 복잡해질 경우 학습이 까다로워, 정제된 말뭉치가 부족하고 기반 연구가 비교적 부족한 한국어의 경우 사용에 제약이 있었다. 이에 본 연구는 강제정렬이 불필요한 CTC 알고리즘을 도입하되, RNN에 비해 더 학습 속도가 빠르고 더 적은 말뭉치로도 학습이 가능한 합성곱 신경망(CNN)을 기반으로 한국어 음소 인식 모델을 구축하여 보고자 시도하였다. 총 2가지의 비교 실험을 통해 본 연구에서는 한국어에 존재하는 49가지의 음소를 판별하는 음소 인식기 모델을 제작하였으며, 실험 결과 최종적으로 선정된 음소 인식 모델은 CNN과 3층의 Bidirectional LSTM을 결합한 구조로, 이 모델의 최종 PER(Phoneme Error Rate)은 3.26으로 나타났다. 이는 한국어 음소 인식 분야에서 보고된 기존 선행 연구들의 PER인 10~12와 비교하면 상당한 성능 향상이라고 할 수 있다.


For Korean phoneme recognition, Hidden Markov-Gaussian Mixture model(HMM-GMM) or hybrid models which combine artificial neural network with HMM have been mainly used. However, current approach has limitations in that such models require force-aligned corpus training data that is manually annotated by experts. Recently, researchers used neural network based phoneme recognition model which combines recurrent neural network(RNN)-based structure with connectionist temporal classification(CTC) algorithm to overcome the problem of obtaining manually annotated training data. Yet, in terms of implementation, these RNN-based models have another difficulty in that the amount of data gets larger as the structure gets more sophisticated. This problem of large data size is particularly problematic in the Korean language, which lacks refined corpora. In this study, we introduce CTC algorithm that does not require force-alignment to create a Korean phoneme recognition model. Specifically, the phoneme recognition model is based on convolutional neural network(CNN) which requires relatively small amount of data and can be trained faster when compared to RNN based models. We present the results from two different experiments and a resulting best performing phoneme recognition model which distinguishes 49 Korean phonemes. The best performing phoneme recognition model combines CNN with 3hop Bidirectional LSTM with the final Phoneme Error Rate(PER) at 3.26. The PER is a considerable improvement compared to existing Korean phoneme recognition models that report PER ranging from 10 to 12.

KCI등재

4가중치 손실 함수를 가지는 순환 컨볼루션 신경망 기반 주가 예측

저자 : 김현진 ( Hyunjin Kim ) , 정연승 ( Yeon Sung Jung )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 8권 3호 발행 연도 : 2019 페이지 : pp. 123-128 (6 pages)

다운로드

(기관인증 필요)

초록보기

본 논문에서는 RCNN (recurrent convolution neural network) 계층 모델을 채택한 인공 지능에 기반을 둔 주가 예측을 제안한다. LSTM(long-term memory model) 기반 신경망은 시계열 데이터의 예측에 사용된다. 다른 한편, 컨볼루션 신경망은 데이터 필터링, 평균화 및 데이터확장을 제공한다. 제안된 주가 예측에서는 위에서 언급 한 장점들을 RCNN 모델에서 결합하여 적용함으로써 다음날의 주가 종가를 예측한다. 그리고 최근의 시계열의 데이터를 강조하기 위해 커스텀 가중치 손실 함수가 채택되었다. 또한 시장의 상황을 반영하기 위해 주가 인덱스에 관련된 데이터를 입력으로 포함하였다. 제안된 주가 예측 방식은 실제 주가를 대상으로 한 실험에서 3.19%로 테스트 오차를 줄였으며, 다른 방법보다 약 19%의 성능 향상을 거둘 수 있었다.


This paper proposes the stock price prediction based on the artificial intelligence, where the model with recurrent convolution neural network (RCNN) layers is adopted. In the motivation of this prediction, long short-term memory model (LSTM)-based neural network can make the output of the time series prediction. On the other hand, the convolution neural network provides the data filtering, averaging, and augmentation. By combining the advantages mentioned above, the proposed technique predicts the estimated stock price of next day. In addition, in order to emphasize the recent time series, a custom weighted loss function is adopted. Moreover, stock data related to the stock price index are adopted to consider the market trends. In the experiments, the proposed stock price prediction reduces the test error by 3.19%, which is over other techniques by about 19%.

KCI등재

5개체 링킹을 위한 RDF 지식그래프 기반의 포괄적 상호의존성 짝 연결 접근법

저자 : 심용선 ( Yongsun Shim ) , 양성권 ( Sungkwon Yang ) , 김홍기 ( Hong-gee Kim )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 8권 3호 발행 연도 : 2019 페이지 : pp. 129-136 (8 pages)

다운로드

(기관인증 필요)

초록보기

자연어 표현에는 인물, 조직, 장소, 제품 등의 다양한 개체들이 존재한다. 이러한 개체는 다양한 의미를 가질 수 있다. 이러한 개체가 갖는 중의성 문제는 자연어 처리 분야에 있어 매우 도전적인 과제이다. 개체 링킹(Entity Linking)이란 텍스트에 등장한 개체명을 지식베이스 내의 적절한 개체로 연결해주는 작업이다. 개체 링킹을 위한 대표적인 방법론인 짝 연결 접근법(Pairwise based method)은 한 문장에서 등장한 개체가 두 개 이상일 경우 서로의 연관성을 이용해 개체 링킹을 하는 방법이다. 이 방법은 동일 문장에서 등장하는 개체들 간의 상호의존성(interdependence)만을 고려하고 있어 포괄적인 상호의존성(Global interdependence)이 부족하다는 한계를 갖고 있다. 본 논문에서는 개체 링킹을 위해 RDF 형태의 지식베이스 정보를 바탕으로 Word2vec을 활용한 Entity2vec 모델을 생성하였다. 그리고 생성된 모델을 사용하여 각 개체에 대한 랭킹을 하였다. 본 논문에서는 짝 연결 접근법의 한계점을 보완하기 위해 포괄적인 상호의존성을 바탕으로 짝 연결 접근법을 고안하고 구현 및 실험을 통해 기존의 짝 연결 접근법과 비교하였다.


There are a variety of entities in natural language such as people, organizations, places, and products. These entities can have many various meanings. The ambiguity of entity is a very challenging task in the field of natural language processing. Entity Linking(EL) is the task of linking the entity in the text to the appropriate entity in the knowledge base. Pairwise based approach, which is a representative method for solving the EL, is a method of solving the EL by using the association between two entities in a sentence. This method considers only the interdependence between entities appearing in the same sentence, and thus has a limitation of global interdependence. In this paper, we developed an Entity2vec model that uses Word2vec based on knowledge base of RDF type in order to solve the EL. And we applied the algorithms using the generated model and ranked each entity. In this paper, to overcome the limitations of a pairwise approach, we devised a pairwise approach based on comprehensive interdependency and compared it.

1
권호별 보기
가장 많이 인용된 논문

(자료제공: 네이버학술정보)

가장 많이 인용된 논문
| | | |
1연안해역에서 석유오염물질의 세균학적 분해에 관한 연구

(2006)홍길동 외 1명심리학41회 피인용

다운로드

2미국의 비트코인 규제

(2006)홍길동심리학41회 피인용

다운로드

가장 많이 참고한 논문

(자료제공: 네이버학술정보)

가장 많이 참고한 논문

다운로드

2미국의 비트코인 규제

(2006)홍길동41회 피인용

다운로드

해당 간행물 관심 구독기관

조선대학교 성공회대학교 한양대학교 고려대학교 연세대학교
 155
 36
 35
 29
 28
  • 1 조선대학교 (155건)
  • 2 성공회대학교 (36건)
  • 3 한양대학교 (35건)
  • 4 고려대학교 (29건)
  • 5 연세대학교 (28건)
  • 6 서울대학교 (24건)
  • 7 한세대학교 (23건)
  • 8 한국방송통신대학교 (21건)
  • 9 한국외국어대학교 (21건)
  • 10 순천향대학교 (18건)

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기